Predictive correlations for leaking heat transfer fluid aerosols in air
نویسندگان
چکیده
Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. Though the possibility of aerosol explosions has been widely documented, knowledge about their explosive potential is limited. Studying the formation of such aerosols by emulating leaks in process equipment will help define a source term for aerosol dispersions and aid in characterizing their explosion hazards. Current research conducted at the Mary Kay O’Connor Process Safety Center involves the non-intrusive measurement of heat transfer fluid aerosol sprays using a Malvern Diffraction Particle Analyzer. A predictive correlation relating aerosol droplet diameters to bulk liquid pressures, temperatures, thermal and fluid properties, leak sizes, and ambient conditions is presented. This correlation can be used to predict the conditions under which leaks will result in the formation of aerosols and ultimately help in estimating the explosion hazards of heat transfer fluid aerosols. The goal is to provide information that will help improve safety in process industries. 2003 Elsevier Science Ltd. All rights reserved.
منابع مشابه
A model for enhanced heat transfer in an enclosure using Nano-aerosols
In this study, the behavior of nanoparticles using a numerical model is discussed. For this study a model for the expansion in free convection heat transfer and mix in a rectangular container with dimensions of 1 × 4 cm using Nano-aerosols in the air is going when copper nanoparticles, use and by changing the temperature difference between hot and cold wall, we will examine its impact on the ra...
متن کاملHeat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger
If an air flow is injected into a liquid fluid, many ambulant air bubbles are formed inside the fluid. Air bubbles move inside the liquid fluid because of the buoyancy force, and the mobility of these air bubbles makes sizable commixture and turbulence inside the fluid. This mechanism was employed to enhance the heat transfer rate of a horizontal double pipe heat exchanger in this paper. Howeve...
متن کاملEvaluation of Eulerian Two-Fluid Numerical Method for the Simulation of Heat Transfer in Fluidized Beds
Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results i...
متن کاملThe Overall Heat Transfer Characteristics of a Double Pipe Heat Exchanger: Comparison of Experimental Data with Predictions of Standard Correlations
The single-phase flow and thermal performance of a double pipe heat exchanger are examined by experimental methods. The working fluid is water at atmospheric pressure. Temperature measurements at the inlet and outlet of the two streams and also at an intermediate point half way between the inlet and outlet is made, using copper-constantan thermocouple wires. Mass flow rates for each stream are ...
متن کاملComparison of Performances for Air-Standard Atkinson and Dual Combustion Cycles with Heat Transfer Considerations
There are heat losses during the cycle of real engine that are neglected in ideal air-standard analysis. In this paper, the effect of heat transfer on the net output work is shown and thermal efficiency of the air-standard Atkinson and the Dual combustion cycles are analyzed. Comparison of performances of the air-standard Atkinson and the Dual combustion cycles with heat transfer considerations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003